
Stochastic Parsing in a Hybrid Semantic Analysis System

Miloslav Konopı́k and Ivan Habernal

Abstract— This article is focused on the problem of meaning
recognition in spoken utterances. The goal is to find a computer
algorithm capable to construct the meaning description of a
given sentence. Such an algorithm is used in applications that
require human computer interaction in a natural language. In
this article we describe some experiments that we made in this
area of computation linguistic research.

I. INTRODUCTION

Recent achievements in the area of automatic speech
recognition started the development of speech enabled ap-
plications. Currently it starts to be insufficient to merely
recognize an utterance. The applications demand to under-
stand the meaning of the utterance. Semantic analysis is a
process whereby the computer representation of the sentence
meaning is automatically assigned to an analyzed sentence.

Fig. 1. The example of an annotation tree.

There are several ways how to represent semantic infor-
mation contained in a sentence. In our work we use tree
structures (see Figure 1) with so called concepts and lexical
classes. The theme of the sentence is placed on the top
of the tree. The inner nodes are called concepts. Concepts
describe some portion of semantic information contained
in the sentence. They can contain other sub-concepts that
specify the semantic information more precisely or they can
contain so called lexical classes. Lexical classes are the
leaves of the tree. A lexical class cover certain phrases that
contains the same type of information. For example a lexical
class “date” covers phrases “tomorrow”, “Monday”, “next
week” or “25th December” etc.

In our approach to semantic analysis we divide the process
of semantic analysis into two parts: the process of lexical
classes identification and the process of semantic parsing
(creating the tree structure above the lexical classes). In this

M. Konopı́k is with University of West Bohemia, Department of Com-
puter Sciences, Univerzitnı́ 22, CZ - 306 14 Plzeň, Czech Republic
konopik@kiv.zcu.cz

I. Habernal is with University of West Bohemia, Department of Com-
puter Sciences, Univerzitnı́ 22, CZ - 306 14 Plzeň, Czech Republic
habernal@kiv.zcu.cz

article we describe the second part, the parsing. Thus, from
now on it will be assumed that the lexical classes are known
for each sentence. The process of lexical class identification
in our system is described in [1].

In our system the lexical classes are created by dedicated
parsers mostly based on expert knowledge. To the contrary
the subsequent step - semantic parsing - is based on stochas-
tic training from data. Since we use two different approaches
to semantic analysis together we refer to our approach as a
hybrid method.

Machine learning algorithms (e.g. stochastic training) re-
quire training data for learning. The training data serve as
examples for the learning algorithm. The algorithm should
be capable to generalize and to extract relations from the
examples (not only store the examples). We use a so called
supervised training. That means we give the algorithm the
example sentences with correct results (in our case with the
correct semantic description). The process of assigning the
correct semantic description to examples is called semantic
annotation and the examples are called annotated sentences.
People who create these sentences are called annotators.

The semantic representation formalism used in this thesis
is taken from [2]. In this paper the formalism is called
the abstract semantic annotations. The advantage of this
approach is that it does not require annotating of all words of
a sentence. The way of stochastic semantic parsing is also
inspired by [3] and [4]. We extend these approaches with
several modifications so that the algorithms can work with
free word order languages (e.g. Czech language).

In this article we describe several approaches to semantic
parsing that use different ways of training and different
amount of context. The algorithms are explained and the
results are given and discussed.

II. DATA AND DATA ANNOTATION

We are focused on the domain of internet queries. The
testing and training sentences are questions in the natural
language (Czech) that can be put into an internet search
engine (similar to Google). The search engine equipped with
our semantic analysis system is then able to process queries
in natural language and to produce adequate answers. For
example a user can ask a weather related question - “What
will be the weather in Pilsen tomorrow”. Then the search en-
gine semantically analyzes the question and returns directly
the picture of the tomorrow weather forecast in Pilsen. An
ordinary search engine usually returns a list of pages. On
some of them the user can find with some effort (fill a form
or select a city form a combo box etc) the requested weather
forecast. Thus the engine with semantic analysis capability

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

is able to improve user experience and significantly lower
the time needed to find the answer. However the methods
described in this article can be used for variety of tasks (voice
driven dialog system, text analysis etc) only examples and
results from internet domain are given here.

Fig. 2. The annotation scheme for weather forecast.

During the semantic annotation process (data creation
process) we designed a structure we call the annotation
scheme (see Figure 2). One scheme was created for each
covered topic (weather, accommodation, public transport, ...).
The annotation scheme clearly states how the annotations can
look like. An annotation of a sentence is always a ”subset”1

of the annotation scheme.
During our research 20292 sentences were obtained and

filtered. Unfortunately more than 70% of the collected sen-
tences were not usable for further processing. Then we
assembled a team of annotators who by hand assigned the
semantic representation to each collected sentence. We have
so far processed 1 344 sentences from 3 domains (weather
forecast, accommodation, public transport information).

III. SEMANTIC PARSING

The goal of semantic analysis is to build a tree that
describes the semantics in a given sentence. At first it has to
localize the lexical classes and then create the tree. In this
article we expect that the lexical classes are found and we
have to create the tree. Now we describe several algorithms
that we designed for that purpose.

A. Parsing according to the annotation scheme

This parser is the simplest one of all parser described here.
It does not need any training data. It just requires loading the
annotation schemes. The input of the algorithm are sentences
with identified lexical classes. Since the resulting semantic
annotation of a sentence always has to be a “subset” of the
annotation scheme the algorithm simply tries to create all
“subset” trees of the loaded schemes. Only trees that contain
all lexical classes of the analyzed sentence are accepted as
results. If more than one scheme can be applied then multiple
results are returned. In that way we basically get all trees
that are acceptable for a given sentence according to all
annotation schemes provided. In some cases there exists just
one tree for the given sentence because the sentence contains
a specific lexical class or a specific combination of lexical
classes that occurs only in one scheme. Then this one tree

1by subset we mean that the annotation tree does not have to contain all
branches from the scheme tree

is returned as a result without any trouble. In the case of
multiple trees one of them is randomly chosen as the result
(there is no clue to guide the selection).

The algorithm is a backtracking bottom-up parser. It takes
one lexical class at a time a tries to connect it to some
superior concept. Then the superior concept is added to
agenda and later it is tried to append it above another concept
and so on. When a root of some scheme is reached then
the algorithm has found one result. If the concept cannot be
connected to any concept then this hypothesis is rejected and
the concept is discarded.

B. Chart parsing

This parser works in two modes: training and analysis.
The training phase requires aforementioned annotated data.
During the training the annotation trees are transformed to
context free grammar rules in the following way. Every node
is transformed to one rule. The node name makes the left
side of the rule and the children of the node make the right
sides of the rule (for example see node “Place” in Figure 1,
this node is transformed into the rule Place -> City).
In this way all the nodes of the annotation tree are processed
and transformed into grammar rules. Naturally, an identical
rule can be created more than once. In that case all duplicate
rules are discarded.

The analysis phase is in no way different from standard
context-free parsing. The sentence is passed to the parsing
algorithm. In our research we use the active chart parsing
algorithm (see e.g. [5]) that runs in polynomial time. The
lexical classes identified in the sentence are treated as termi-
nal symbols and passed to the parsing algorithm. The words
that are not members of any lexical class are ignored. The
result of parsing - the parse tree - is directly in the form of
the result tree we need.

One problem of this algorithm is the ambiguity. The
grammars created by the aforementioned way are usually
strongly ambiguous. Ambiguous grammars cause that more
than one parse tree is created during parsing. When more
than one parse tree is returned it is unclear which one should
be treated as the result. Since we have no clue in this type of
parser we select randomly one that is returned as the result.

The ambiguity in grammars also introduces problems to
the parsing algorithm. It is necessary to explore all possibili-
ties during parsing because otherwise a correct result can be
overlayed by an incorrect ambiguous alternative. Thus it is
necessary to modify the original chart parsing algorithm to
explore all possible ambiguous ways of parsing a substring.

C. Stochastic Chart Parsing

In this parser we introduce probabilities. The probabilities
help us to deal with the ambiguity. A probability of a rule
transcription is assigned to each rule. The probabilities are
computed from the training data. Using stochastic2 pars-
ing the resulting parse trees are returned with the overall
probability of the parse. The parse tree with the highest

2stochastic = using probability

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

probability is then the most likely to be the correct result.
Now, we will explain the process of parsing, the training
formulas and modification to the parsing algorithm to deal
with probabilities more formally.

First, we start with training. In the previous section III-B
it was explained how the annotations trees are transformed to
context-free grammar rules. It was said that when a duplicate
rule is found then it is discarded. Now, the rule is not simply
discarded but instead it is counted how many times the rule
occurred in the training data. Then we can estimate the
conditional probability of a rule transcription given the left
side of the rule using the MLE3:

P (N → α|N) =
Count(N → α)∑
γ Count(N → γ)

(1)

To deal with the probabilities the chart parser from previ-
ous section is modified in the following way. During parsing
the probability of the so far created tree P (T) is computed
by:

P (T) = P (N → A1A2...Ak|N)
∏

i

P (Ti) (2)

where N is the top nonterminal of the subtree T , Ai are
the terminals or non-terminals to which the N is being
transcribed and Ti is the subtree having the Ai nonterminal
on the top.

When the parsing is finished a probability is assigned to all
resulting parse trees. The probability is then weighted by the
prior probability of the theme and the maximum probability
is chosen as the result:

T̂ = arg max
i

P (Si)P (Ti) (3)

where T̂ is the most likely parse tree and P (Si) is the
probability of the starting symbol of the parse tree Ti.

The advantage of this parser is that it assigns probabilities
to resulting parse trees. In the case of multiple outputs the
most probable parse tree is selected as the result. However,
this parser accounts for the lexical classes only and other
words of the sentence are still ignored.

D. Word Context Parsing

Now we start looking at other words of sentences rather
than looking on lexical classes only. For this purpose we
need to extend both the training algorithm and the analysis
algorithm.

The training phase shares the same steps with the training
of the previous parser in section III-C. So, the node is
transformed to the grammar rule and the frequency of rule
occurrence is counted. However instead of going to the next
node the context of the node is examined. Every node that
is not a leaf has a subtree beneath. The subtree spans across
some nonterminals. The context of the node is defined as
the words before and after the span of the subtree (see
figure 3). During training the frequency of the context and

3Maximum Likelihood Estimate

Fig. 3. Illustration of a context of a subtree.

a nonterminal (Count(word, nonterminal)) is counted. The
probability of a context given a nonterminal is computed via
MLE as follows:

P (w|N) =
Count(w,N) + λ∑

i Count(wi, N) + λV
(4)

where λ is the smoothing constant, V is the estimate of the
vocabulary size, w is the actual context word and wi are all
the context words of nonterminal N .

Additionally, to improve the estimate of the prior proba-
bility of the theme (the root node of the annotation) we add
words to the estimate as well:

P (w|S) =
Count(w,S) + κ∑

i Count(wi, S) + κV
(5)

where κ is the smoothing constant, wi are the words of
the sentence and S is the theme of the sentence (the
theme constitutes the starting symbol after annotation tree
transformation).

The analysis algorithm is the same as in the previous
parser but the probability from formula 2 is reformulated
to consider the context:

P (T) =
∑

i

P (wi|N)P (N → A1A2...Ak|N)
∏
j

P (Tj)

(6)
Then the best parse is selected using context sensitive prior

probability:

P (T̂) = arg max
i

P (Si)
∏
j

(P (wj |S)P (Ti) (7)

where Si is the starting symbol of the parse tree Ti and wj

are the words of the analyzed sentence.
This parser provides a reasonable performance (see section

IV) however there is still some unused potential. The condi-
tional probabilities are computed in a word order dependent
way. There is also the independence assumption of stochastic
context free grammars (see [6], section 12.2) that may be too
strong. Stochastic models can be tuned and so on. For further
discussion see section V-B.

IV. RESULTS

This section describes the performance of the parsers
introduced above. It was tested on 9 annotation schemes from
3 themes (weather forecast, accommodation, public transport

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

TABLE I. The parser performance
Parser Training data Cross validation
Annotation scheme 0.37 0.37
Chart parsing 0.62 0.59
Stochastic Chart Parser 0.64 0.62
Word Context Parser 0.87 0.77

information). The total number of tested sentences was 1344.
The performance is given by the accuracy measure. The
accuracy is computed as the ratio between the number of
correct results (C) and the number of tested sentences (T):
C
T . The result is considered to be correct only if the result
is identical to the semantic annotation contained in the
training/testing data.

There are two results given. First all sentences were used
for both training and testing. Second results are computed
by the cross validation technique. The pool of annotated
sentences is split to the training and testing set and the
resulting performance is computed. Then the pool is split
again but in the different way so that that the new training
set does not share any sentences that were contained in the
previous set and again the results are computed. The process
of splitting and performance computation is continued until
all sentences are used for testing. Afterward the obtained
results are averaged. In this way the complete data can
be used for both training and testing without violating the
principle that data used for training must not be used for
testing. In our case 10% of sentences was used for testing
and 90% sentences for training.

A. Results discussion

The first parser (Parsing according to the annotation
scheme) does not use training data at all and yet it reached
accuracy of 37%. For this result it can be concluded that the
identified lexical classes are strong information source.

The second parser (The Chart Parser) introduced training
from data. Results show a big jump in the performance
caused by the usage of the data.

The improvement brought by introducing statistics to
parsing (Stochastic Chart Parsing) is not so significant. The
reasons why the use of statistics did not meet our expectation
in performance could be only guessed. We think that due to
the independence assumption the probability estimates are
not predictive enough.

The last parser (Word Context Parsing) uses the context to
improve the stochastic prediction. It can be concluded that
the context is another strong information source for semantic
parsing.

The price for the increased performance of the Word Con-
text Parser is a slightly more complicated parsing algorithm
but it still has the same computational complexity as other
parsers - O(n3). Since it uses all words of training data the
size of the model is proportional to the size of the training
data. In the case of large training data the trained model can
be larger and a pruning algorithm should be used.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this article we introduced several methods for semantic
parsing. The article shows the influence of training data
and context to semantic parsing. The most advanced parser
provides very promising results. However it is necessary
to stress that the provided results assume perfect (100 %
accuracy) recognition of lexical classes. In reality it is not
the case and the results with imperfectly recognized lexical
classes are lower.

B. Future Works

Many improvements could be done. We expect some
interesting results from the implementation of the HVS
parser [2].

There is a lot of opportunity in tuning the parsers.
Particularly different methods of smoothing the probability
estimates can be used. Other information sources can be
introduced. We will try to condition the probabilities to alle-
viate the independence assumption of stochastic grammars.

Obtaining more data is of course always necessary and it
is the never ending process.

VI. ACKNOWLEDGMENTS

This work was supported by grant no. 2C06009 Cot-
Sewing.

REFERENCES

[1] I. Habernal, “Lexical class analysis,” M.S. thesis, University of West
Bohemia, 2007.

[2] H. Yulan and S. Young, “Semantic processing using the hidden vector
state model,” Computer speech & language, 19(1):85–106, 2005.

[3] S. Young, “The statistical approach to the design of spoken dialogue
systems,” Tech. Rep. CUED/F-INFENG/TR.433, Cambridge University
Engineering Department, 2002.

[4] S. Miller, D. Stallard, R. Bobrow, and R. Schwartz, “A fully statistical
approach to natural language interfaces.,” in In Proc. of the 34th Annual
Meeting of the Association for Computational Linguistics, 1996.

[5] J. Allen, Natural Language Understanding, Benjamins / Cummins
Publishing Co., Inc., Redwood City, CA, USA, second edition, 1995.

[6] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguis-
tics, and Speech Recognition, Prentice Hall PTR, Upper Saddle River,
NJ, USA, 2000.

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

